Ⅰ 什么是勾股定理,计算公式是什么
勾股定理,又称毕达哥拉斯定理(Pythagoras theorem)、商高定理、新娘座椅定理、百牛定理,是平面几何中一个基本而重要的定理。
勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。
勾股定理计算:直角三角形的两条直角边的平方和等于斜边的平方。a²+b²=c²。
(1)蛋糕勾股定理公式怎么算扩展阅读:
勾股定理意义
1、勾股定理的证明是论证几何的发端;
2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;
3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;
4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;
5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。
1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由着名数学家选出的,勾股定理是其中之首。
Ⅱ 勾股定理怎么算。是什么公式
勾股定理计算:直角三角形的两条直角边的平方和等于斜边的平方。a²+b²=c²。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
(2)蛋糕勾股定理公式怎么算扩展阅读:
勾股定理意义
1、勾股定理的证明是论证几何的发端;
2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;
3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;
4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;
5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用.1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由着名数学家选出的,勾股定理是其中之首。
Ⅲ 勾股定理3个公式是什么
勾股定理计算:直角三角形的两条直角边的平方和等于斜边的平方。a²+b²=c²
勾股定理的三个变形公式是a=k(m²+n²),b=2kmn,c=k(m²+n²)
勾股定理,又称毕达哥拉斯定理(Pythagoras theorem)、商高定理、新娘座椅定理、百牛定理,是平面几何中一个基本而重要的定理。
勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。
(3)蛋糕勾股定理公式怎么算扩展阅读:
勾股定理意义
1、勾股定理的证明是论证几何的发端;
2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;
3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;
4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;
5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。
1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由着名数学家选出的,勾股定理是其中之首。
Ⅳ 勾股定理的公式是什么 怎么计算
在任何一个直角三角形中,两条直角边的长度的平方和等于斜边长度的平方,这就叫做勾股定理。即勾的长度的平方加股的长度的平方等于弦的长度的平方。如果用a,b,c分别表示直角三角形的两条直角边和斜边,那么a²+b²=c²
Ⅳ 勾股定理是怎么算出来的
有很多经典的证明 说个直观的一种把第一个图的右边的直角三角形平移 得到第二个图灰色的面积相等 第一个图为斜边的平方 第二个图为两个直角边得平方和即勾股定理
Ⅵ 勾股定理怎么算。是什么公式
勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。
(如下图所示,即a² + b² = c²)
例子:
以上图的直角三角形为例,a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。
由勾股定理得,a + b = c → 3 +4 = c
即,9 + 16 = 25 = c²
c =√25 = 5
所以我们可以利用勾股定理计算出c的边长为5。
勾股定理的逆定理:
勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:
如果a² + b² = c²,则△ABC是直角三角形。
如果a² + b² > c²,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。
如果a² + b² < c²,则△ABC是钝角三角形。
Ⅶ 勾股定理怎么计算
勾股定理,直角三角形的两条直角边的平方和等于斜边的平方.
A²+B²=C²
C=√(A²+B²)
√(120²+90²)=√22500=√150²=150
例如直角三角形 的三条边是3(直角边)、4(直角边)、5(斜边)
3²+4²=5²
5=√(3²+4²)=√5²=5
(7)蛋糕勾股定理公式怎么算扩展阅读
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
参考资料勾股定理_网络
Ⅷ 数学勾股定理公式是什么
勾股定理公式
1、基本公式
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a²+b²=c²。
2、完全公式
a=m,b=(m²/k-k)/2,c=(m²/k+k)/2其中m≥3
(1)当m确定为任意一个≥3的奇数时,k={1,m²的所有小于m的因子}
(2)当m确定为任意一个≥4的偶数时,k={m²/2的所有小于m的偶数因子}
3、常用公式
(1)(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。
(2)(5,12,13),(7,24,25),(9,40,41)……2n+1,2n²+2n,2n²+2n+1(n是正整数)。
(3)(8,15,17),(12,35,37)……2²*(n+1),[2(n+1)]²-1,[2(n+1)]²+1(n是正整数)。
(4)m²-n²,2mn,m²+n²(m、n均是正整数,m>n)。
(8)蛋糕勾股定理公式怎么算扩展阅读:
勾股数组
勾股数组是满足勾股定理a2+b2=c2的正整数组(a,b,c),其中的a,b,c称为勾股数。例如(3,4,5)就是一组勾股数组。
任意一组勾股数(a,b,c)可以表示为如下形式:a=k(m²+n²),b=2kmn,c=k(m²+n²),其中k,m,n均为正整数,且m>n。
3勾股定理的定理用途
已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。
Ⅸ 勾股定理是怎么算的
勾股定理指直角三角形的两条直角边的平方和等于斜边的平方,用数学语言表达:a²+b²=c²。
证明:
设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,
因为∠C=90°,所以cosC=0。
所以a2+b2=c2。
(9)蛋糕勾股定理公式怎么算扩展阅读
勾股定理应用
勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:
1、如果a² + b² = c²,则△ABC是直角三角形。
2、如果a² + b² > c²,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。
3、如果a² + b² < c²,则△ABC是钝角三角形。